The J-domain protein J3 mediates the integration of flowering signals in Arabidopsis.

نویسندگان

  • Lisha Shen
  • Yin Ga Germain Kang
  • Lu Liu
  • Hao Yu
چکیده

The timing of the switch from vegetative to reproductive development in Arabidopsis thaliana is controlled by an intricate network of flowering pathways, which converge on the transcriptional regulation of two floral pathway integrators, FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1). SHORT VEGETATIVE PHASE (SVP) acts as a key flowering regulator that represses the expression of FT and SOC1. Here, we report the identification of another potent flowering promoter, Arabidopsis DNAJ HOMOLOG 3 (J3), which mediates the integration of flowering signals through its interaction with SVP. J3 encodes a type I J-domain protein and is ubiquitously expressed in various plant tissues. J3 expression is regulated by multiple flowering pathways. Loss of function of J3 results in a significant late-flowering phenotype, which is partly due to decreased expression of SOC1 and FT. We further show that J3 interacts directly with SVP in the nucleus and prevents in vivo SVP binding to SOC1 and FT regulatory sequences. Our results suggest a flowering mechanism by which J3 integrates flowering signals from several genetic pathways and acts as a transcriptional regulator to upregulate SOC1 and FT through directly attenuating SVP binding to their regulatory sequences during the floral transition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and molecular characterization of the RecQsim gene in Arabidopsis, rice (Oryza sativa) and rape (Brassica napus)

In any organism that reproduces sexually, DNA Recombination plays vital roles in the generation of allelic diversity as well as in preservation of genome fidelity. Genome fidelity is particularly important in plants because mutations occurring during the development of flowering plants are heritable and can be passed onto the next generation. One of the gene families that play crucial roles in ...

متن کامل

A MYB-domain protein EFM mediates flowering responses to environmental cues in Arabidopsis.

Plants adjust the timing of the transition to flowering to ensure their reproductive success in changing environments. Temperature and light are major environmental signals that affect flowering time through converging on the transcriptional regulation of FLOWERING LOCUS T (FT) encoding the florigen in Arabidopsis. Here, we show that a MYB transcription factor EARLY FLOWERING MYB PROTEIN (EFM) ...

متن کامل

Integration of flowering signals in winter-annual Arabidopsis.

Photoperiod is the primary environmental factor affecting flowering time in rapid-cycling accessions of Arabidopsis (Arabidopsis thaliana). Winter-annual Arabidopsis, in contrast, have both a photoperiod and a vernalization requirement for rapid flowering. In winter annuals, high levels of the floral inhibitor FLC (FLOWERING LOCUS C) suppress flowering prior to vernalization. FLC acts to delay ...

متن کامل

Biotic and abiotic factors act in coordination to amplify hydraulic redistribution and lift.

Zhu T, Wu Y. 2007. A putative CCAAT-binding transcription factor is a regulator of flowering timing in Arabidopsis. Plant Physiology 145: 98– 105. Hayama R, Agashe B, Luley E, King R, Coupland G. 2007. A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. Plant Cell 19: 2988–3000. Khanna R, Kronmiller B, Maszle D...

متن کامل

Biotic and abiotic factors act in coordination to amplify hydraulic redistribution and lift

Zhu T, Wu Y. 2007. A putative CCAAT-binding transcription factor is a regulator of flowering timing in Arabidopsis. Plant Physiology 145: 98– 105. Hayama R, Agashe B, Luley E, King R, Coupland G. 2007. A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. Plant Cell 19: 2988–3000. Khanna R, Kronmiller B, Maszle D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 23 2  شماره 

صفحات  -

تاریخ انتشار 2011